
Team Outlaws
Final Report

Project Sponsor and Mentor:
Dr. Eck Doerry

Team Members:
Quinn Melssen

Liam Scholl
Max Mosier

Dakota Battle

May 2nd, 2022

2

Table of Contents

1 Introduction 3

2 Process Overview 4

3 Requirements 4

4 Architecture and Implementation 5
4.1 User Authentication Module 7

A: Description of Responsibilities 7
B: Route Diagram 8
C: Illustrative Examples 9

4.2 Clients Module 9
A: Description of Responsibilities 9
B: Route Diagram 10
C: Illustrative Examples 10

4.3 Email Hub Module 11
A: Description of Responsibilities 11
B: Route Diagram 12
C: Illustrative Examples 13

4.4 Courses Module 13
A: Description of Responsibilities 14
B: Route Diagram 14
C: Illustrative Examples 15

4.5 Teams/Projects Module 16
A: Description of Responsibilities 16
B: Route Diagram 16
C: Illustrative Examples 17

5 Testing 18

6 Project Timeline 21

7 Future Work 22

8 Conclusion 23

9 Appendix A: Development Environment and Toolchain 24
9.1 Hardware 24
9.2 Toolchain 25

Recommend Extensions for Visual Studio Code: 25
9.3 Setup 26
9.4 Production Cycle 27

10 Appendix B: Helpful Resources for Development 37
10.1 Helpful Videos 37
10.2 Helpful Links 37

3

1 Introduction
As Agile programming practices continue to take the tech industry by storm, the

importance of small teams in real world engineering workplaces is quickly increasing.
According to Goremotely.net, over 71% of tech companies either already use, or are in
the process of adopting agile methods, where small, flexible and cross-functional teams
play the central role. The prevalence of small team workgroups in the professional world
has made some wonder: why are more engineering classes in higher education not
team-based, to provide specific training in small team projects? A main reason for this is
the difficulty for faculty to manage and maintain the teams involved in such an
undertaking.

Our client Dr. Doerry has spent the last 15 years working to perfect the Northern
Arizona University’s Computer Science Capstone Program, and as such has dealt with
many of these difficulties first hand. Every year Dr. Doerry must painstakingly gather
and communicate with enough clients to provide projects for the year. This process
consists of hours of back-and-forth emails between many different potential clients to
develop appropriate project proposals. Once the projects have been gathered and
finalized, students are expected to review them and submit their preferences which are
then used to assign them to their respective projects, along with other information such
as their GPA. This process too, requires a high amount of hands on effort that could be
streamlined by a successful technology. Once the projects have a team, Dr. Doerry will
then be responsible for running the capstone course and managing the collection of
various assignments. In summary, there are three primary phases of this process, each
involving large amounts of hands-on effort:

● Gathering projects - Involves reaching out to dozens of potential clients,
exchanging hundreds of emails, and keeping track of the varying stages of each
potential project.

● Forming teams - Involves taking in preferences, GPAs, and other information
about each student by manually, then inputting all relevant information into an
algorithm, and forming teams.

● Executing class - Involves using several different modes of communication to
run the team project course, including email, websites, and verbal/written
communication.

While this process ultimately leads to a successful capstone experience, Dr. Doerry
struggles with its inefficiency; this has only been amplified as he has attempted to split
leadership of the course with another NAU Computer Science professor, Dr. Michael
Leverington.

During this transitional process, Dr. Doerry has realized that his current solution
could be streamlined both for himself and future instructors, as well as anyone who

4

needs to run a team-based course or project. TeamBandit will act as a portal to do just
this, breaking each of the problem areas outlined above into modules that will lower the
effort involved with each step. This document will detail the process from start to finish
in order to help interested parties get a broad look at the product as a whole.

2 Process Overview
In order to create TeamBandit effectively the team needed some way to keep

track of what people were working on as well as a version control management system.
We ended up going with GitHub for our version control system and utilized its KanBan
boards to keep track of tasks that needed to be completed. Visual Studio Code was also
the editor utilized by the team. This code editor offered valuable extensions for
interacting with React, our front end, and our backend frameworks. After ensuring that
the team was using similar environments for development to reduce one-off errors, we
broke the development of the web application into parts.

Max Mosier ended up taking on a structural role for the application, building a
majority of the foundation for the application to make it easier for others to start adding
features. This consisted of setting up the page routing, user routing, and the backend
express routes to the database application. With this skeleton built, the rest of the team
was able to implement their modules.

Liam Scholl took the role of heading specialized database interactions. One of
the primary features implemented by Liam was the uploading and storing of files onto
our application and database to be served back to users. This feature was utilized by
many other modules in the application.

Quinn Melssen took it upon himself to develop the email hub where users were
able to view emails scraped from their inbox in order to keep them separate from
non-course related correspondence. This entailed covering many edge cases as emails
are formatted differently by each mail provider.

Dakota Battle focused on making sure commits and pull requests were merged
smoothly and remained bugfree. He also worked on UX, ensuring the application’s
aesthetics were satisfactory, and most importantly uniform.

Our development process consisted of meeting weekly as a team to discuss
what each member would need to accomplish for the week. This was to help avoid
merge conflicts in the Github repository as we were able to prioritize working on
different files and features.

3 Requirements
In order to accurately know what we wanted to accomplish in the creation of our

application, our team began a requirements acquisition phase early on. This consisted

5

of us meeting weekly as a team, and with our client to refine previous requirements and
to discuss new ones. We wanted to identify functional requirements, performance
requirements, and environmental requirements. A more detailed description of these
requirements includes:

● Functional Requirements - A specification defining what the product should be
able to do. As an example, what functions the product should be able to carry out
for a user.

● Performance Requirements - Specification of criteria that is used to judge the
operation of the system from a user perspective. For example, how long it takes
a user to perform an operation while utilizing one or multiple functions of the
product.

● Environmental Requirements - Also referred to as environmental constraints,
these are any restrictions on the product related to which hardware or software to
use defined by the client.
For the web application, functional and performance requirements, as well as

environmental constraints have been identified through the process of requirements
acquisition. In total we identified 82 functional requirements, 25 performance
requirements and no environmental requirements. Some of the key requirements we
identified include:

● User Accounts: allow users to create accounts to save their information
● Email Hub: help keep track of a mass amount of emails from many clients
● Course Management: provide a tool for adding courses and managing the

content inside
● Team Assignment: make it easier for assigning students to teams through the

application
● Pre-Generated Team Website: automatically generate team websites, containing

details about a pre-existing project
With the requirements identified our team needed to figure out the architecture of

our application and how we were going to go about building it. We will discuss the
architecture we ended up going with in the next section.

4 Architecture and Implementation
TeamBandit is made up of several distinct modules with each serving a unique

purpose. These modules interact with each other in several ways to produce the desired
application functionality; planning the interactions between each module helped us to
modularize the system into manageable components. Our system’s overall architecture

6

is displayed in the diagram below.

Figure 4.1 High level architecture of the TeamBandit web application
From the figure above, we can see that the web application does in fact have

several modules that interact with each other seamlessly throughout the use of the
application. Before each of these modules is explained in detail, the technology stack
that we chose will first be briefly explored as it is important to understand how our
technologies can assist us detail each module.

Our technology stack primarily consists of three main technologies that help the
architectural modules interact with each other. These technologies are React, Express,
and PostgreSQL. The web application also utilized smaller supporting frameworks to
complete the functionality of each module.
React

● Although referred to as a front end framework, React is a large JavaScript library
for building user interfaces for applications and is supported by Meta.

● Proven efficiency in creating web applications with strong visual appeal. Used by
Spotify, Amazon, NASA, and Netflix.

● Utilizes JavaScript functions to return HTML components. This is exactly the type
of modularity we were looking for in a front-end framework, as we can break up
our web application into reusable components.

7

Express
● A back end web framework available through Node, a popular runtime

environment for JavaScript.
● Provides a robust set of features to allow us to create an API to be used across

the application in all of the web application’s modules. This allows the web
application to create, read, update, and delete data from the database upon user
interaction.

PostgreSQL
● An open-source object-relational database management system to store all of

the web application’s data.
● Perfect for TeamBandit as it can take advantage of relational database tables to

connect data thus, easily connecting architectural modules.
Supporting Frameworks

● Bcrypt - A library to help hash passwords.
● Material UI - Provides a library of foundational components for front end design,

enabling the ability to develop React applications faster.
● React Router - A standard library for routing in React.
● JSON Web Token (JWT) - Generate tokens to authenticate users and ensure that

only these authenticated users can make changes on the application.

Now that our technology stack has been briefly detailed, the responsibilities of each
architectural module will now be explained.

4.1 User Authentication Module
The application is account-based and access to various elements of the

application depend on the account status, so it is essential for the system to not only be
capable of identifying a user, but also to accurately authenticate that identity to ensure a
user is who they say they are. Each user is identified by an email address and a correct
password, where both are set during the sign up process by the user. The user is then
associated with a user id that is stored in the database, which assists in the creation of
an authentication token for the user.

A: Description of Responsibilities
This module is key in making sure that our client’s, as well as their students’

information is correctly stored and pulled from the database. In order to achieve this,
this module will have to take full advantage of all of the features that our technology
stack offers.

8

● PostgreSQL acts as our database management system. Here, we will be able to
store information about the users such as their email, name and password.

● Express allows us to set up ‘routes’ that will act as gateways to getting
information about users and storing information about the users into the
database.

● React helps us build better UI and UX experiences for our users when they sign
in to or register an account in the application.

● Bcrypt allows us to encrypt user passwords for security purposes. This will allow
the user's password to be hidden from others.

● JWT allows us to cache the users information locally on the user’s browser so
that it allows them to stay signed into our application.

With the above technologies, a single sign-in/registration page where users can
fill out a form of information to either sign up for or sign into our application was created.
Once signed in, the user will be able to access the TeamBandit web application and any
information about their account. This is done by utilizing the JWT library to create
‘tokens’ that identify who the user is.

B: Route Diagram
Below is the API for TeamBandit user authentication. It includes express routes

for user registration, sign in, and verification. The verification and authorization routes
essentially act as middlewares for the other routes to ensure that if someone is trying to
view or make a change to the application, they are an identified TeamBandit user.

Figure 4.1B: Express route diagram for the User Authentication module.

Note that from this point on, all route diagrams for each module will follow a similar
format to the above diagram and will contain the API calls for that diagram.

9

C: Illustrative Examples

Figure 4.2C: The TeamBandit sign-in/sign-up page for users.

4.2 Clients Module
A course organizer will have the job of keeping track of multiple clients and their

corresponding projects. This can get unorganized quickly, so to alleviate this, the clients
module consists of a table listing the clients and their proposed projects. Contact
information will also be available for each client, and an organizer has the ability to add,
delete, and edit the details of a selected client. This information is stored and retrieved
from our database system and be displayed using our frontend framework. These can
be sorted in various ways, enabling further organization of the project clients. The
information stored in this table is essential for communication between organizer and
client in the email hub module.

A: Description of Responsibilities
This module is key in making sure that the course organizer can have an

organized view of the project clients and have the ability to add, edit, and delete any
information for a particular client. In order to achieve this, this module takes full
advantage of many of the features that our technology stack offers. These technologies
include PostgreSQL, Express, React.

● Using PostgreSQL, we store and pull information about the clients such as their
email, name and password.

10

● Express allows us to set up ‘routes’ that will act as gateways to getting
information about clients and storing information about the clients into the
database.

● React helps us build better UI and UX experiences for a course organizer when
they view the clients table in the application.

With the above technologies, a centralized location of project clients that is easily
viewable by the course organizer was created.

B: Route Diagram

Figure 4.2B: Express route diagram for the Clients module.

C: Illustrative Examples

Figure 4.2C: A view of the Clients table in TeamBandit.

11

4.3 Email Hub Module
Below, a flow diagram of our client’s current work flow for this module is

displayed.

Figure 4.3: Diagram showing Dr. Doerry’s envisioned workflow utilizing TeamBandit to communicate with
clients.

Our client receives constant emails from different clients in different email threads.
Keeping track of all of these is an arduous process for our client. In order to fix this
current process, email chains are created for faculty to see all of the emails organized
by clients in one place on the web application.

TeamBandit’s email hub is accessible from the initial landing page upon logging
in and simply displays emails to and from a course organizer and the client for a project.
The organizer can view all of these emails in a conversation-like format where their sent
and received messages are easily differentiated. An external email server is used to
handle the overhead of all communications, and a script simply copies the relevant
email information to the hub and organizes it accordingly. Rather than truly performing
as a server for communications, it acts as an optimized display to provide transported
information from elsewhere, the reason being the convenience of messages being
available within the application itself. The information flow of the data is as follows: The
script listens for activity on a predetermined interval, so when a relevant message is
received in the organizer’s inbox or a message meeting specific constraints is sent out
by the user, the script copies the email information to the database so it can then be
displayed on the email hub page.

A: Description of Responsibilities
This module focuses on the early stages of our client’s capstone process. It

centers on features regarding clients as well as email messages between clients. These

12

features include getting emails associated with capstone clients and storing them into a
database and pulling those messages from the database and displaying them on our
web application. In order to accomplish these tasks on the web application, we will need
to use the following technologies:

● PostgreSQL acts as the database management system for the web application.
Here, we will be able to store information about clients along with the messages
associated with them.

● Express allows us to set up ‘routes’ that will act as gateways to getting
information about clients and messages and store that information into the
database.

● React helps us build a better UI and UX experience for our users related to how
they will view the clients and messages as well as their experience creating new
clients.

● Python has a built-in library called email.parser which allows us to pull
information from emails if our created email is carbon copied (CC’d) in the email.

With these technologies, two separate locations are created, one where clients
can be viewed, edited and created, and another where messages from clients can be
displayed.

B: Route Diagram

Figure 4.3B: Express route diagram for the Email Hub module.C: Illustrative Examples

13

C: Illustrative Examples

Figure 4.3C1: A view of the Email Hub in TeamBandit.

Figure 4.3C2: A modal popup of an email once it is clicked.

4.4 Courses Module
The courses module provides the functionality necessary to create, remove, edit,

and otherwise manage courses in progress or the data contained therein. From here,
the course is first created and supplied necessary information for its initialization. Within

14

that initialized course, the course itself can be archived, individual users can be added
or removed from the course, course descriptor information can be edited, and
deliverables can be created for student submissions.

A: Description of Responsibilities
The courses module is responsible for a multitude of actions that will be carried

out by the course organizer. Before this module fully commences, all projects will have
been created, all students will have their accounts and be assigned to their courses,
and all students will be assigned to their projects. The actions that the course organizer
may perform include:

● Creating and updating a course
● Deleting a course
● Adding, removing, and updating users from within a course
● Updating course information
● Creating deliverables for students to submit directly on the web application

The above actions that an organizer can perform will ensure that a course can be
initialized successfully.

B: Route Diagram
In order to properly execute the courses module, we broke it down into separate

API files corresponding to each module within a course. Note that the diagram below
only shows two modules. The modules consist of projects, schedules, assignments, and
students. These modules, except for the assignments module, will be detailed in the
next section, and follow the same create, read, update, and delete structure in their
respective files.

15

Figure 4.4B: Express route diagram for the Courses module.

C: Illustrative Examples

Figure 4.4C: The courses page where a user can view and enter all of their courses.

16

4.5 Teams/Projects Module
The teams/projects module is within the courses module as there are team

assignments and project creations within a course. Individual students are assigned
teams, and one team pertains to a project. After a team is assigned to a project, the
organizer has the ability to add or remove students from a team. Members of a team
can submit deliverables within a course, and the application will submit it on behalf of
the team. The teams/projects module communicates with the course module to
associate teams/projects with a specific course to be used for deliverables.

A: Description of Responsibilities
The teams/projects module will ensure that a course organizer has the ability to

create projects within a course and assign users, such as students, to a project. This
module will be responsible for collecting the project preferences of all students. These
preferences are filled out by the students and will then be displayed to the course
organizer at the time of assigning teams on a team assignments page located within
each course. This page will consist of all student names along with some corresponding
information which includes, but is not limited to:

● Email address
● University User ID
● GPA
● Top five project preferences

Along with student information being displayed, general information such as project
numbers and the amount of students currently assigned to a team will be displayed to
the organizer.

When creating a project, a course organizer will be able to assign students and
associate clients to that project all in one place.
In order to accomplish these tasks, we will need to utilize these technologies:

● PostgreSQL acts as our database management system. Here, we will be able to
store information about students and projects.

● Express allows us to set up ‘routes’ that will act as gateways to getting
information about students and projects and store that information into the
database.

● React helps us build better UI and UX experiences for the course organizer
when they view all students and projects in one centralized location.

B: Route Diagram
This module is by far the most complex, so it contains the largest API that the

web application uses.

17

Figure 4.5B: Express route diagram for the Teams/Projects module.

C: Illustrative Examples

Figure 4.5C: The final projects page after completion of project creation and team assignments.

18

4.6 Planned vs. Built Application
For the most part, the development team was able to build all features of the

planned application in the final built application, with an exception of two features.
These two features are a unique TeamBandit view for a third type of user: mentors, and
the ability to archive a course.

Throughout the planning process, we assumed that the interaction between a
user and the application would be radically different between organizers, students, and
mentors. However, as we built up the features of the application, we realized that
mentors will essentially be students with the ability to possibly leave feedback, a feature
that was not discussed in the planning process. While mentors were an important user
view to our client at first, it seemed that organizers and students took precedence over
them.

The ability to archive a course was always something that was meant to be
implemented, but the development of TeamBandit always contained the sudden
implementation of new features. As a result, database changes were frequent, and if the
team had spent time on implementing course archiving before most of the baseline
features were implemented, the archiving process would have to be constantly revisited
for every new major feature. The team did not see this as ideal, and we focused on
implementing new course features over an archive system. Essentially, course archiving
was not built into the application as there was no time to implement it after the constant
addition of larger application features.

Now that the overall architecture and implementation of TeamBandit has been
explored, the results of testing the application can be described.

5 Testing
When conducting testing for TeamBandit, we identified three primary testing

methods for identifying areas of refinement within the application. We conducted them
as follows:

5.1 Unit Testing
Unit Testing was concerned with individually verifying proper functionality of each

unit within the application. Two scales of measurement for units were conducted. These
were technological units of the application and conceptual units. Technological Unit
Testing involved splitting each use of different major technologies into units and
conducting a series of tests pertaining to their associated functionality.

TeamBandit was split into the authentication module, data handling units for
tables, and the database module. Testing of the authentication module simply ensured
that our mode of authentication performed as expected during registration, login, and

19

managing active user sessions. The technology of focus for this was the JWT tokens we
used for maintaining existing sessions for a given user. Testing data handling units
simply involves entering various variations of data in each table that stores content in
the application. Any unexpected behavior was addressed as it was encountered. For
database tests, we tested retrieval of data from each directly-accessible table from each
page it was accessible from when logged into the app.

For the conceptual units, we separated the “Login”, “Registration”, “Data
Manipulation”, “Course Management”, “Student Features”, and “Team Lead Features”.
This was simple; each unit was isolated from its interactions with the rest of the
application and was only provided needed resources for basic functionality. Then,
typical actions using that module were performed. No notable issues were brought to
light throughout either scope of this method of testing.

5.2 Integration Testing
After verifying proper functionality for each unit/module individually, we were able

to conclude that any potential arising issues are unlikely to be caused by a sole module
of the application. The next logical step was to combine the modules gradually to see
how their performance changes in response to being integrated with other modules.
We selected the following modules to perform integration testing on:

● User Authentication Module - Ensures that information is correctly stored and
pulled from the database.

● Clients Module - the course organizer can have an organized view of the project
clients and have the ability to add, edit, and delete any information for a particular
client.

● Email Hub Module - Pulling emails associated with capstone clients, storing them
into a database, pulling those messages from the database, and displaying them.

● Courses Module - Centralized location for all courses and their corresponding
course information.

● Teams/Projects Module - Ensure that a course organizer has the ability to create
projects within a course and assign users, such as students, to a project.

These are the foundation of the overall application are better visually detailed in Figure
4.1 in the previous section.

Effective integration between all of these various modules make up the complete
application, and ensuring that each module works cohesively with each other module it
directly interacts with is imperative in preventing unexpected behavior later down the
road. In order to do this interaction–by-interaction we conducted a series of detailed
predefined actions that made up a use case within each module.

20

5.3 End User Testing
With consideration toward the product’s intended use, it was apparent early on

that the user interface needed to be tested to identify any buttons, links, or functionality
in the user’s view that causes confusion or uncertainty when using TeamBandit. Our
strategy to ensure accurate and relevant results was to gather a sample of test end
users who have the same level of experience as our intended end users and have them
test TeamBandit live with no prior experience in order to gather feedback. The
procedure was as follows:

● Test end user is provided a laptop with TeamBandit running live on it
● Test end user is given a list of tasks to conduct, having never seen or used

the application before
● While the test end user is using the application, a member of our team is

present. The test end user “thinks aloud”, describing their thought process
at every step of their experience.

● The team member makes a note of anything considerable
● The test end user is given a survey for additional input following the demo.

This procedure was conducted for each test end user, and after concluding each
demo session we analyzed the results to look for patterns of difficulty encountered by
these test users. Our reasoning behind this is because if several test users are
confused by a specific element of the user interface, it is likely that this element is
unclear enough to confuse a considerable quantity of users and should be addressed
accordingly.

Our sample of test end users consisted of 4 instructors with a background in
organizing courses and 2 students. Further broken down, the sample of instructors
included 2 instructors with experience organizing team-based courses and 2 instructors
with experience organizing only typical classes. This enabled our sample to account for
a wider range of potential organizer end users, as not all instructors interested in
organizing team-based courses have experience doing so.

We identified a few areas that several test end users struggled with. Some of
these pertained to operations outside of a course. For example, some of our organizer
test users struggled to identify the location of the email hub and/or clients page, as they
are accessible from a different navigation bar than course features are. Our response
was to make this navigation bar more apparent to the user, especially when they first
log in. As a result, this collapsible navigation bar starts out expanded so it is visually
obvious upon login.

21

6 Project Timeline
TeamBandit’s development cycle will take place over the course of the next few

months and will utilize a continuous integration approach in order to get the product in
user’s hands as soon as possible. Development has already begun, starting in
December with the creation and formatting of our AWS server, which is where we will be
hosting our application. This included tasks such as downloading Node (server
backend), React (frontend framework), PostgreSQL (database), as well as all of the
necessary tools for development such as node package dependencies. Our envisioned
project timeline moving forward is summarized in Fig. 5.0.

Figure 5.0: This Gantt chart shows key components in our development plan moving forward

22

As shown, each component is allotted a relatively short amount of time due to
our minimal focus on the aesthetics of the project in the early phases of development.
Our plan begins with setting up the routes for each of the pages of TeamBandit. Doing
this early allows for each developer to work on their individual components without
having to merge changes to the routing files, minimizing the amount of conflicts we will
have to manage.

After routes have been established the development process will be broken down
into modules, namely the course creation/execution module, the client
acquisition/communication module, and the student creation module. Each of these
modules work with one another to create the whole of TeamBandit, and as such each
developer will maintain a strong understanding of the project as a whole.

To begin our implementation we start with loose skeletons of each module to give
ourselves a foundation to work off of. This is a short process and should only take a few
days as shown by the 7 day allotment. After these initial steps have been completed
each developer will move into fleshing out the functionality of their respective portion.

Liam Quinn Dakota Max

-Adding courses
-Setting up course
page/metadata
-Student account
route
-Site settings

-Email parsing
script
-Displaying emails
in hub
-Sending emails to
new users

-Homepage display
-Status tracker
-Adding clients
-Client table

-Project creation
Assigning students
to project
-Student
logins/account
creations

Fig 5.1: Table highlighting each developer’s major priority, with more detail found
below

The separation of concerns between each of these tasks allows our developers
to work simultaneously while minimizing the needs for complex merging. As each of the
pieces come together we will move into a more iterative process, garnering feedback
from our client and quickly implementing these changes during our User/UX Testing
phase throughout the end of the project's development cycle. This will be the majority of
the focus during the month of March.

7 Future Work
While TeamBandit fulfills many of the requirements dictated by our client, there

have been additions made over the course of the semester. Many of these features
revolve around the expansion of the application to use cases other than that of our
client, such as other team based organizations (i.e. sports teams, corporate teams, etc).

23

While we have kept such fluidity in mind throughout development, many suggestions
came up that were not feasible to be implemented in our development. Some of these
include:

● Dynamic terms
○ Allow organizers to input their own term names can then be used to sort

classes in their course catalog (i.e. Spring, Fall, Summer, Q1, Q2, etc.)
● Dynamic student information

○ Currently the web application and team assignment module only can
receive and show certain meta information pertaining to students (i.e.
GPA)

○ In the future one should have the ability to decide what information they
want to upload about their students (i.e. batting average for a baseball
team)

There are also some large features of the website that were partially completed but
could be improved, such as:

● Automatic team assignment
○ As of now the team assignment module works by the organizer manually

seeing the meta information correlated to each student and placing them
in the teams by hand

○ In the future an algorithm can be written to automate this sorting (i.e.
N-Queens recursive sorting algorithm to create best outcome based off
student preferences and GPA)

● Team website editor
○ Currently the team websites are standardized, the order and content of the

websites are not changeable
○ In the future there may be a team website editor built into the application,

similar to how WIX lets creators drag and drop
Overall, Team Outlaws has strived to meet the requirements highlighted in the original
product page and has mostly succeeded. Moving forward work on the project would be
mostly refinement based, building off of the modules already in place.

8 Conclusion
Upon completion of the implementation plan, each of these modules will

assemble the discussed components into the fluid web application intended by the
design. Connecting the course initialization, user account creation and authentication,
and team assignment/management mechanisms together will allow the course
organizer to effectively oversee the progression of several courses while maintaining
organization and control.

24

This record of design established a concrete set of primary functional
components and outlined the high-level architecture and overview to implement it,
thereby laying out a template for modularizing each major element of functionality.
These modules and their respective interfaces have been extensively elaborated upon,
paying special attention to the specific roles each member of the development stack
plays in the functionality of these modules as well as how these roles contribute to
TeamBandit’s overall control flow.

Tying together the features of each interface with its respective underlying
implementation details provides a lower-level blueprint of how the application will
actually be interacted with to not only the anticipated user/client, but also can be
doubled as an explicit guide to the development of each discrete module’s distinct
feature requirements. The most valuable outcome provided by this design process is
the explication of the ground-level specifics that had not been anticipated prior to the
software development stage. With these specifics resolved and simplified in writing, the
remainder of the development process essentially becomes translation to code.

These specific developments glue together the vision that guides the entirety of
TeamBandit: Reflecting the importance of working together in a productive environment.
For far too long, adequately preparing students for the world that awaits them was
difficult because the real world is not easily mirrored in education. Courses at the
university level actively struggle to provide an environment of learning that aligns with
the indispensable need for collaborative progress in every industry- until now.

With the development of these details behind us, we’re confident this application
will not only support the course management of Dr. Doerry, but hundreds of course
organizers across the world by heavily reducing the demands for maintaining classes
focused around applying the content in a team setting. Even further, the coordinated
application of skills will provide the students enrolled in those courses with an approach
to learning that reflects reality.

9 Appendix A: Development Environment and
Toolchain

9.1 Hardware
For the development of this application, our team used a combination of Windows and
Apple machines (Desktops, Laptops, and Macbooks). There are no recommended tech
specs as this application will run on lower end systems, it may just take a longer period
of time to build.

25

9.2 Toolchain
Visual Studio Code was the primary development editor. This was a helpful code editor,
although some would call it a full IDE, as it would notify you on what branch you were
working on (in the bottom left corner), as well as provide some helpful extensions.

Recommend Extensions for Visual Studio Code:
TODO Highlight by Wayou Liu
TODO Highlight makes it incredibly easy to identify portions of code for your team.
Simply putting TODO in a code comment highlights it, which brings people's attention
directly to that line. With this we were able to notify your team of problems or solutions
to code.

Python by Microsoft
When working with Python it’s important to have nice color indicators in Visual Studio
Code, this extension helps VSCode to know how to work with Python.

Prettier - Code Formatter by Prettier
It’s important to have a standardized way to write your code as a team. With Prettier it's
never been easier! Simply press CTRL + Shift + P in the Visual Studio Code editor then
press ‘Format document’ then the document will automatically get formatted in an
identical manner! Amazing!

JavaScript (ES6) code snippets by charalampos karypidis
JavaScript was a key coding language for our application, making up 95% of the
project. This is an essential extension as it lets Visual Studio code know how to work
with JavaScript.

HTML Snippets by Mohamed Abusaid
HTML is another essential part as you are utilizing HTML snippets in react. This will let
Visual Studio code know how to work with JavaScript.

ES7+ React/Redux/React-Native Snippets by dsznajder
Since React is the primary framework of our application this is another essential
framework. This framework will help you code in React easier as you can utilize the
handy code snippets.

ENV by Jakka Prihatna
This extension helps with the two .env files we have in our application. We recommend
this so that Visual Studio Code knows how to work with them.

26

Code Spell Checker by Street Side Software
The next three extensions are not mandatory but helpful. This one helps to make you
aware of misspellings when it comes to variable and function names.

Auto Rename Tag by Jun Han
Another helpful extension. This extension allows you to rename both parts of a tag. For
example if you have a <p> and a </p> tag, and you want to change it to a <div> /</div>
tag you only have to change one as the other will get changed with this extension.

Auto Close Tag by Jun Han
Another handy extension. This automatically creates the closing tag for any tag you
create. For example you will type <p> to make a paragraph tag and this extension will
automatically generate a closing </p> tag.

9.3 Setup
The installation instructions for TeamBandit are detailed here:

Initial Setup
1. Clone the TeamBandit GitHub repository to your machine.

https://github.com/QJMTech/TeamBandit
2. Install Node. This is used to run React and Express.

https://nodejs.org/en/
3. In the terminal, navigate to the /website directory in your cloned TeamBandit

repository.
4. Run the following command to install all of the Node dependencies:

5. Install PostgreSQL to set up the database.
https://www.postgresql.org/download/

6. In the terminal, navigate to the /website/server directory in your cloned repository.
There is a file named “sqlCode.txt” in this directory. Copy the contents of this file
and paste them into the PostgreSQL query tool then run the query. The database
is now set up!

7. The /website and /website/server directories each have an .example.env file.
Each contains comments and examples detailing how to set up your own .env
files to set up connections to the database.

https://github.com/QJMTech/TeamBandit
https://nodejs.org/en/
https://www.postgresql.org/download/

27

Initial Setup Complete!

Run Guide
Windows
To run on windows you need to open two terminals (either through VSCodes terminal,
powershell, or normal CMD terminal).

First Terminal
Navigate to the /website directory, then run:

This runs the React application on localhost.

Second Terminal
Windows does not execute commands simultaneously, so you need to navigate to the
directory /website/server/middleware.
From there, run:

This will set up the connection to the database.

MacOS/Linux
Navigate to /website and run:

You are done!

The application should be set up and running now. Congratulations!

9.4 Production Cycle
One of the primary things we do with the application is adding things to the PostgreSQL
database and then grabbing things from the database. In order to give you an idea of

28

how to do this I will walk you through a scenario.

1. Say in our application we want to add another column to this students table.
Firstly you would want to add this column to the PostgreSQL database. For the
sake of this run through we will add a Student UID or User ID.

2. The tables are pretty straightforward for our database so we will simply run the
ALTER TABLE command to add the new column to the students table.

3. Now that we have the student_uid added to the database we need to do two
things. 1) Have a way to add the new student_uid information to the database,
and 2) have a way to grab that information from the database. Luckily, we’ve
already done the hard work in figuring out how to do this… you just gotta figure
out how to use our code we have already created!

4. First let’s set up a way to add this information to the database, we can’t grab
anything if nothing is there right? Where would we do this? In the file structure we
tried to build it in the way that the application is currently set up. For example,
‘TeamBandit’(our main page application) is located in the ‘Pages’ folder because
it is one of the many page locations you can go to with our application. Inside of
the ‘TeamBandit’ we have the ‘TeamBanditPages’ such as ‘Clients’, ‘Courses’,
and the ‘Email hub’. The students table is located in a course. So we go inside of

29

‘Courses’, navigate to ‘CoursePages’ and then inside of there we found the
‘Students’ page!
IF YOU ARE EVER LOST ON WHERE TO LOOK FOR A PAGE, START AT
TEAM BANDIT PAGES and mimic wherever you click on the application by
opening the corresponding folder.

5. The students table is not actually located in the ‘Students.js’ file. If you open up
the Components folder inside you will find ‘StudentList.js’. Inside here we want to
do two things. a) Create a new column in our table to detail the Student UID, and
b) locate where we grab the information about a student so we know where to
change it.

30

a. On line 58 of StudentList.js we have our columns variable. We want to
copy an existing column and add our new field and headerName. Field =
the name in the database, headerName is what you want to be displayed
as a header for the table column. If you want more information on
DataGrids I recommend you go to https://mui.com/x/react-data-grid/ .

b. This is now added as a column! However nothing will get populated since
you aren’t grabbing the data. From the database. When you first load a
react page the useEffect(()) function will be called. If you look inside the
useEffect function you will see that we call getStudents();

https://mui.com/x/react-data-grid/

31

This is what we use to grab the student information, so now if we locate
getStudents you will see the express route we use to grab this data

This shows us that the express route is located at
/students/$courseInfo.course_id. The /students indicates that this route
is located in the student routes. We now want to navigate to the /server
folder to find this route.

Located in routes we have studentRoutes.js, open this file. If you
remember we are looking for a /$courseInfo.course_id part of the route.
On line 76 we found it!

32

As you can see we now have the SQL query where we get the student
information! This may not have been a good example as this query
already grabs * from the student database, which means the newly
created student_uid is already getting pulled. If it wasn’t a * you would
need to add student_uid to the SELECT statement.

6. Now we are grabbing the information. Let's get the ability to add that information
to the database. If you navigate back to the ‘StudentList.js’ file you will see an
‘AddStudent.js’ file. Open this up. There are three things we need to do, a) create
a variable to keep track of the student_uid, b) add the variable to the SQL
statement, and c) create a React component to have the new field be an option.

a. We declare all of our variables at the top of the file. So let's declare a
variable to keep track of the student_uid. We utilize Reacts useState
components for this. https://reactjs.org/docs/hooks-state.html

b. There are two places where we need to add it to our grabbing and adding
statements. On line 96 we have our addList function for adding a CSV,
and on line 138 we have onSubmitForm for adding an individual student.
Lets add the newly created student_uid to these locations to help make.

https://reactjs.org/docs/hooks-state.html

33

With these added we can want to go to the express route to make sure the
routes add the new information. We can see that both the CSV and the
individual adding routes are located in /students.

We will want to navigate to studentRoutes.js again and find the routes
where /students and /csv are located. After looking at the file the
individual one is located on line 8, the CSV is located on line 44.
On line 29 you want to add student_uid like this:

On line 66 you want to add student_uid like this:

Make sure to restart your authRoutes every time you make changes
to your express routes. Or else it won’t update!!

c. Finally we want to be able to add this student information through the
React front end. Navigate back to AddStudent.js! There are two things
we need to do for this, i) Add the new student_uid variable to the CSV
upload table, and ii) add the new student_uid variable to the individual
add.

i. You actually don’t need to do anything for the CSV uploader,
instead we have to change the table to look for the new variable.
You can do this by adding this:

34

The parser breaks the values into variables based on the header of the
.csv file. In this case we would want to add studentUID to the header of
the .csv file so it adds them to this Table Cell.

ii. Next, is the adding as an individual student! You’ll want to add this:

This makes it so there is a field to add the student!

35

7. Now we should be good to add the new information with the addition of a
student!

After filling out a student lets see if adding them works!

36

As you can see, Max Mosier now has mlm as their Student UID! Congratulations!
Make sure that you restart your authRoutes, if on a MAC you will need to
restart your whole server, or else the new UID will not get added.

Next steps? Well… we have a lot of students who need the Student UID, the best way
would be to do it through the edit option. I guess you might start there by figuring out
how to get the editing to work! This is just an example of the workflow generally followed
when adding, grabbing and displaying the data on the application!

37

10 Appendix B: Helpful Resources for Development

10.1 Helpful Videos
When constructing the application, we were unsure of where to start, however, we came
across a YouTube video series that helped us build the structure of our application. We
recommend you watch these five videos as they will help you get started in the
application!

PERN Stack Course - Postgres, Express, React, and Node
freeCodeCamp.org - (1:22:44)
https://www.youtube.com/watch?v=ldYcgPKEZC8&t=6s

Learn JWT with the PERN stack by building a Registration/Login system Part 1
The Stoic Programmers - (1:33:49)
https://www.youtube.com/watch?v=7UQBMb8ZpuE&t=12s

Learn JWT with the PERN stack by building a Registration/Login system Part 2
The Stoic Programmers - (1:11:03)
https://www.youtube.com/watch?v=cjqfF5hyZFg

Learn Database Design by combining our JWT and Pern stack Todo List app
together Part 1
The Stoic Programmers - (45:23)
https://www.youtube.com/watch?v=l3njf_tU8us

Learn Database Design by combining our JWT and Pern stack Todo List app
together Part 2
The Stoic Programmers - (1:27:10)
https://www.youtube.com/watch?v=25kouonvUbg&t=25s

While these five videos take a long time, it is important to go through them all if you
want to further understand the application. We recommend you do them in the order
they are presented.

10.2 Helpful Links
For some other helpful information we wanted to give you access to our Draw.io which
had sketches of initial concepts and architecture. Hopefully this proves helpful!

https://www.youtube.com/watch?v=ldYcgPKEZC8&t=6s
https://www.youtube.com/watch?v=7UQBMb8ZpuE&t=12s
https://www.youtube.com/watch?v=cjqfF5hyZFg
https://www.youtube.com/watch?v=l3njf_tU8us
https://www.youtube.com/watch?v=25kouonvUbg&t=25s

38

Draw.io Sketch
https://drive.google.com/file/d/1-SAk5xolAMnn8JFaYsnEoJxicKu_FsBZ/view?usp=sharing

Additionally we wanted to share the Material UI website. Material UI contains all of the
visual elements we used for our application. If you want to make additions or changes
you will need to familiarize yourself with them.

https://mui.com/material-ui/getting-started/installation/

https://drive.google.com/file/d/1-SAk5xolAMnn8JFaYsnEoJxicKu_FsBZ/view?usp=sharing
https://mui.com/material-ui/getting-started/installation/

